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Introduction. Due to rapid progress in last two decades in developing new
rear earth magnetic materials allowing to produce very strong permanent mag-
nets, wider interest arises in using them in different MHD devices for generating
alternating traveling and/or rotating magnetic fields instead of traditional 3-phase
inductors. The advantages of inductors (rotors) with permanent magnets poles are
obvious. First of all, the inductor on permanent magnets has a higher efficiency,
as there is no need to waste energy for generating the magnetic field. Second,
inductors on permanent magnets have no windings at all and from this fact an-
other important advantages follow: a simpler design, smaller overall dimensions
and weight.

At the Institute of Physics of the University of Latvia series of electromagnetic
induction pumps on permanent magnets [1] for different liquid metals applications
have been developed, covering a rather wide range of developed pressure and
provided flow rates. Additionally, theoretical investigations demonstrated that
such permanent magnet inductors may be successfully used for producing flat
induction MHD stoppers in devices for steel strip galvanizing [2].

In this report the results of analytical calculations of a two-dimensional mag-
netic field generated by a system of linear permanent magnets fixed on the inner
ferrous base in an annular nonmagnetic gap are presented. All physical parameters
of linear permanent magnets are identical and the magnetization of each magnet
of rectangular form is considered to be uniform and constant. The calculated dis-
tribution of the magnetic field generated by an 8-poles inductor is compared with
the results of measurements on the model.

1. Analytical calculations. In the report the analytical calculations of
the magnetic field generated by a periodic system of permanent magnets in the
annular gap for rotors with a radial working magnetic field component, Fig. 1a,
are considered.

Let us assume that the length of rotors is long enough and the magnetic field in
the nonmagnetic gap can be considered as two-dimensional (no axial components
of the magnetic field). Let us take N = 2p – the number of linear permanent
magnets fixed on an inner ferrous yoke (p – number of poles pairs), R0 – radius of
the rotor, Rf – radius of an outer ferrous yoke. We consider that magnetization M
for all rectangular magnets (having cross-section hm am) is the same and uniform
(|M| = Br = const) and does not depend on magnetic fields generated by other
magnets. Here hm is the height of linear magnet in the direction of magnetization
and am is its width. According to the theory of magnetism [3], such linear magnet
is equivalent to the system of two surface electric currents with opposite directions
and having density Js = Br/µ0 and passing through the side surfaces of magnets.

In the cylindrical coordinate system the periodicity of structure allows to
consider the task only in the sector: 0 ≤ ϕ ≤ α = π/2p. As a scale of length,
we take a radius R0, then h = hm/R0, a = am/R0 and R = Rf/R0, Fig. 1b.
The equation of side surface will be: βs(ρ) = arcsin(a/2ρ), where r ≤ ρ ≤ 1,

r =
√

(1 − 2h · √(1 − (a/2)2) + h2).
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Fig. 1. Cross-section of an 8-pole magnetic rotor and the schematic of calculation region: 0 ≤
ϕ ≤ α; r ≤ ρ ≤ R, α = 22.5◦.

It is easy to show that the distribution of current density in our system of
coordinates can be expressed by the following expressions:

jz(ρ, ϕ) =
Js

R0ρ
· δ

(
ϕ − βs(ρ)

)
√

1 − (a/2ρ)2
, at r ≤ ρ ≤ 1 ,

and jz(ρ, ϕ) = 0, ρ < r, ρ > 1.

The magnetic field is calculated using the z-component of vector potential

Az(ρ, ϕ) having components Bρ =
1

R0ρ

∂Az

∂ϕ
and Bϕ = − 1

R0

∂Az

∂ρ
, which should

correspond to the following boundary problem:

∂2Az

∂ρ2
+

1
ρ

∂Az

∂ρ
+

1
ρ2

∂2Az

∂ϕ2
= −µ0R

2
0jz(ρ, ϕ)

0 ≤ ϕ ≤ α , ϕ = 0 : ∂Az/∂ρ = 0 ; ϕ = α : ∂Az/∂ϕ = 0 .

On the surface of the outer ferrous yoke (with µ = ∞) at ρ = R we have ∂Az/∂ϕ =
0. To simplify the task, the same condition was used also at the bounda-ry ρ =
r: ∂Az∂ϕ = 0. So the surface of the inner ferrous polygonal-shaped yoke is
substituted by the cylindrical surface. It is clear that an error introduced by this
simplification is minimized at increasing the number of poles N and the height of
linear magnets am. As an analytical solution of the boundary problem is solved by
tailoring solutions in regions r ≤ ρ ≤ 1 and 1 ≤ ρ ≤ R, at the boundary ρ = 1 the
condition of discontinuity of the potential and its derivative ∂Az/∂ρ are used. As
a result, a solution of the boundary problem is represented in the following way
at r ≤ ρ ≤ 1:

Az(ρ, ϕ) =
2R0Br

π

∞∑
k=1

Ak(ρ)
sin(2k − 1)pϕ

2k − 1
,

where

74



Magnetic field distribution in the rotor of permanent magnets

Ak(ρ) =

ρ∫
r

(t/ρ)(2k−1)p · sin
[
(2k − 1) p arcsin(a/2t)

]
√

1 − (a/2t)2
dt+

+

1∫
ρ

(ρ/t)(2k−1)p · sin
[
(2k − 1) p arcsin(a/2t)

]
√

1 − (a/2t)2
dt+

+
1

1 − (r/R)2(2k−1)p

1∫

r

{(r2

ρt

)(2k−1)p

+
( ρr2

tR2

)(2k−1)p

+

+
( tρ

R2

)(2k−1)p[
1 +

( r2

ρ2

)(2k−1)p]}
× sin

[
(2k − 1) p arcsin(a/2t)

]
√

1 − (a/2t)2
dt;

At the boundary conditions 1 ≤ ρ ≤ R we have:

Az(ρ, ϕ) =
2R0Br

π

∞∑
k=1

Bk

[
ρ−(2k−1)p +

( ρ

R2

)(2k−1)p]sin(2k − 1) p ϕ

(2k − 1)
, where

Bk =
1

1 − (
r
R

)2(2k−1)p

1∫
r

[
t(2k−1)p +

(r2

t

)(2k−1)p]sin
[
(2k − 1) p arcsin(a/2t)

]
√

1 − (a/2t)2
dt .

For practice, the distribution of the magnetic field is of interest in the region
of the nonmagnetic gap at 1 ≤ ρ ≤ R:

Bρ(ρ, ϕ) =
2pBr

π

∞∑
k=1

Bk

[
ρ−(2k−1)p +

( ρ

R2

)(2k−1)P ]cos(2k − 1)pϕ

ρ
,

Bϕ(ρ, ϕ) =
2pBr

π

∞∑
k=1

Bk

[
ρ−(2k−1)p −

( ρ

R2

)(2k−1)P ]sin(2k − 1)pϕ

ρ
.

The absence of the outer ferrous yoke means that in all the above formulae R
should be set infinite.

2. Comparison of calculation and experimental results. The re-
sults of theoretical calculations were compared with the results of measurements
of the magnetic field distribution for the real experimental model of the 8-pole
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Fig. 2. Comparison of calculation results with experimental measurements.
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Fig. 3. Dependence of the radial component of the magnetic field on the distance from the pole
surface.
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Fig. 4. Distribution of the azimuthal component of the magnetic field.

rotor (p = 4), Fig. 1, of length 250 mm and assembled from permanent NdFeB
magnets with the square cross-section am = hm = 25 mm, length 50 mm with
inside magnetization Br = 1.1 Tesla. The outer passive ferrous yoke was absent
that corresponds to Rf = ∞. The radius of the rotor was R0 = 56.4 mm.

In Fig. 2 the comparison of the results of calculations and the results of exper-
imental measurements of the magnetic field distribution for the radial component
depending on azimuth at different distances x from the surface of the rotor is il-
lustrated (the distance x is measured from the pole surface located at the distance
55 mm from the rotor axis). In Fig. 3 the dependence of the radial component of
the magnetic field on the distance x at ϕ = 0 is illustrated. The dependence of the
azimuthal component on the distance x in the plane ϕ = α between the magnets
is illustrated in Fig. 4.

3. Conclusion. Comparison of the results of calculations with the results
of experimental measurements for the magnetic field distribution generated by the
rotor demonstrates that the formulae derived from the analytical solution give a
rather good agreement.
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