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MHD homopolar devices, where the interaction of the radial field of current
density and an axial magnetic field generates an azimuthal component of the elec-
tromagnetic body forces (EMBF) field and sets liquid metal in rotational motion,
are in use in various applications [1].

In our work, we use a simple and reliable model of ”external” friction [2, 3]
that allows us to describe the dynamics of melt flow in such devices in turbulent
regimes. Here the non-stationary turbulent flow in the cylindrical cavity of the
device can be described in the induction-free approximation by the dimensionless
equation in the cylindrical system of coordinates r, φ, z:
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current having the frequency ω, C0 is an empirical constant. Equation (1) is solved
under the following initial and boundary conditions:

Uϕ|τ=0 = Ust; Uϕ|r=1 = 0; Uϕ|r=0 = 0. (2)

A homopolar device comprises a cylindrical working cavity partially filled with a
liquid metal, which is formed by a cylindrical electrode, a body made of dielectric
and a central electrode. Around the body, an annular winding is arranged. The
electric current is passed through the central electrode, liquid metal, cylindrical
electrode and the winding connected in series. The current induces a radial field
of current density jr in the liquid metal, and inside the annular winding it mainly
induces an axial magnetic field Bz. The interaction of the radial field of current
density and the axial magnetic field generates an azimuthal component of the
electromagnetic body forces (EMBF) field. Under the action of these forces, the
melt rotates at a certain angular velocity Ωst.
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The current density field in such device was analyzed in [3], where components
had the form:
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, (3)
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The magnetic field activated in melt by the electric current flowing in a turn of
finite thickness was calculated as a result of superposition of magnetic fields excited
by annular currents I0/K:
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The distribution of azimuthal forces along the radius is approximated by the func-
tion defined in regions I (”quasi-solid” flow with 0 ≤ r ≤ ri) and II (ri < r ≤ 1)
and having the form:

C1(r) = AaI · r · θi(r) + AaII · θII(r)/r , (6)

where θi(r) is the Heaviside’s step function in the respective region. In this case,
we can describe the stationary velocity of rotating flows in regions I and II, re-
spectively, by the following equations:

LUϕI − β2UϕI = −AaI · Ha · Ha∗ r , (7)

LUϕII − β2UϕII = −AaII · Ha · Ha∗ r . (8)

These equations are solved under the following boundary conditions:

UϕI|r=0 = 0; UϕII|r=1 = 0; UϕI|r=ri = UϕII|r=ri ;

d(rUϕI)
dr

∣∣∣∣
r=ri

=
d(rUϕII)

dr

∣∣∣∣
r=ri

.
(9)

The solution of the problem has the form:

UϕI = C1I1(βr) + AaI · Ha · Ha∗r/β2 , (10)

UϕII = C2I1(βr) + C3K1(βr) + AaII · Ha · Ha∗/β2r , (11)

where the constants C1, C2, C3 can be found by solving a system of equations
satisfying the boundary conditions and continuity and smoothness conditions at
the boundary between regions I and II.

The angular velocity in a “quasi-solid” flow 〈Ω〉 is defined from the algebraic
equation:

〈Ω〉2 + Q〈Ω〉 − Q∗ = 0 , (12)

where
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Its solution determines 〈Ω〉 as a function of parameters:
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Further we examine Eq. (1) in region I using a quasi-solid profile of the azimuthal
velocity. In this case, ∆UφI = 0, and the equation determining UφI is reduced to
the following form, where T (τ) is the electric current temporal dependence:

∂UϕI

∂τ
+

2π

Reω
β2(τ)UϕI = 2π · AaI

Ha · Ha∗

Reω
r T 2(τ) (14)

with the initial condition:
Uϕ|r=0 = Ust . (15)

We seek the solution of problem (14)–(15) in the form:

UϕI = Ω(τ) · r. (16)

Substituting (16) into Eqs. (14)–(15), we obtain:

Ω(τ) +
2πc0kr

δz
Ω2(τ) +

2πHa2

Reω
T 2(τ)Ω(τ) =

2πAaI · Ha · Ha∗

krReω
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with the initial condition:
Ω(τ)|r=0 = 1. (18)

The solution of this problem for different forms of T (τ) makes it possible to com-
pute the evolution of liquid metal free surface level.

As a result of this work, the distribution of electromagnetic fields is described,
and the dynamic characteristics of the homopolar device are analyzed on the basis
of the “external” friction model.
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