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Introduction. As established in [1], a solid and conducting sphere with
radius a and conductivity σs ≥ 0 freely suspended in a Newtonian liquid metal
of uniform viscosity µ, and conductivity σ ≥ 0 and subject to uniform ambient
electric and magnetic fields E and B translates without rotating and parallel to
E ∧ B at the velocity U such that

U = a2(σs − σ)
E ∧ B

3µ(σs + 2σ)
. (1)

This work examines, within the same framework, the rigid-body motion (transla-
tion and rotation) of a sphere when it lies near a plane solid wall.

1. Governing problem and symmetries. We consider, as sketched
in Fig. 1, a solid conducting sphere with uniform conductivity σs ≥ 0, radius
a and center O′, held fixed in a Newtonian liquid metal of uniform viscosity µ
and conductivity σ ≥ 0 above a rigid and stationary plane wall Σ. Cartesian
coordinates (O, x1, x2, x3) are used with Σ the x3 = 0 plane, OO′ = lez and l > a.
We look at the net magnetohydrodynamic force Fn and torque Cn (about O′)
exerted on the sphere when subject to uniform electric and magnetic fields E and
B. The wall is perfectly insulating or conducting for E respectively parallel to or
normal to e3 whilst the disturbed electric field is E − ∇φ′ in the sphere P and
E − ∇φ in the liquid domain Ω. Setting n = O′M/a on the sphere’s surface S,
the functions φ and φ′ obey

Fig. 1. A conducting solid sphere held fixed or fixed or freely-suspended above the palne wall
Σ in a Newtonain liquid metal and subject to uniform electric and magnetic fields E and B.
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Table 1. Relevant Cases m (m = 1, . . . , 5) and associated non-zero Cartesian components of
the net force F and torque C on a motionless sphere and of the trnalsational velocity U and
angular velocity Ω of a freely suspended sphere.

Case m wall type E B Fn Cn U Ω

1 insulating Ee2 Be3 F
(1)
n e1 C

(1)
n e2 U (1)e1 Ω(1)e2

2 insulating Ee2 Be1 F
(2)
n e3 0 U (2)e3 0

3 insulating Ee2 Be2 0 C
(3)
n e3 0 Ω(3)e3

4 conducting Ee3 Be3 0 C
(4)
n e3 0 Ω(4)e3

5 conducting Ee3 Be2 F
(5)
n e1 C

(5)
n e2 U (5)e1 Ω(5)e2

∇2φ′ = 0 in P , ∇2φ = 0 in Ω, ∇φ = 0 as OM → ∞, (2)

σ(E −∇φ) · n and φ = φ′ on S, (3)

∇φ · e3 = 0 on Σ if E · e3 = 0, φ = 0 on Σ if E ∧ e3 = 0. (4)

The liquid flows with pressure p, velocity u and stress tensor σ because of the
Lorentz body force f = σ(E∇φ+u∧B) where one assumes that B is not disturbed
[1]. Accordingly, one obtains

Fn = Fi + F,
1
σs

Fi =
∫
P

(E −∇φ) ∧ B dΩ, F =
∫
S

σ · n dS, (5)

Cn = Ci+C,
1
σs

Ci =
∫
P

O′M∧[(E−∇φ)∧B] dΩ, C =
∫
S

O′M∧σ·n dS. (6)

Assuming vanishing Reynolds and Hartmann numbers [2], (u, p) satisfies

∇ · u = 0 and µ∇2u = ∇p− σ(E−∇φ) ∧ B in Ω, (7)

u = 0 on S, u = 0 on Σ, (u, p) → (0, σ[E∧B]·O′M) as O′M → ∞. (8)

By linearity and for symmetry reasons it is possible to restrict the analysis to five
Cases m (m = 1, . . . , 5) defined in the Table 1. Furthermore, exploiting symmetry
considerations as in [2] permits us to obtain for these Cases the direction of F, C
for the motionless sphere and of the translational velocity U and angular velocity
Ω of a freely suspended sphere. The results, summarized in the Table 1, show
that each pair (F,C) and (U,Ω) solely depends upon 7 unknown coefficients for
a general setting (E,B).

2. Advocated coordinates and flow decomposition. By virtue of
(5)–(6), one gets the net force F and net torque C on the motionless sphere by
successively evaluating the pairs (Fi,Ci) and (F,C). This task is achieved as
detailed below.

2.1. Evaluation of ((Fi,Ci). The vectors Fi and Ci are obtained by solving
the problem (2)–(4). The fluid domain’s geometry suggests to use for this purpose
the suitable bipolar coodinates (ξ, η, ψ) which relate [3–4] to the usual cylindrical
polar coordinates ( (ρ, x3, ψ), with x1 = ρ cosψ and x2 = ρ sinψ, as follows

ρ =
c sinh ξ

cosh ξ − cos η
, x3 =

c sin η
cosh ξ − cos η

, c = (l2 − a2)1/2. (9)

Under this choice, the surfaces S and Σ admit the equation ξ = a and ξ = 0,
respectively with l = a coshα. Similary to the treatment available in [5] it is then
possible to expand each non-zero Cartesian component of Fi and Ci as a serie of
known coefficients that solely depend upon (α, a, σs, σ) and (E,B) for each Case
m.
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2.2. Flow decomposition and evaluation of (F,C). On order to get ride of
the body force arising in (7) it is fruitful to set u = ui + u2 and p = p1 + p2 with
u1 = σφ(O′M ∧ B)/(2µ) and p1 = σ(E ∧ B) · (O′M). As the reader may easily
check, one thus arrives for the flow (u2, p2) at the problem

∇ · u2 = ∇ · u1 and µ∇2u2 = ∇p2 in Ω, (10)

u2 = u1 on S, u2 = u1 on Σ, (u2, p2) → (0, 0) as O′M → ∞. (11)

Indeed, the velocity u2 vanishes far from the sphere because so do u, ∇φ (and
thus u1). Note that (u2, p2) is free from body force. We denote by σl the stress
tensor associated to the flow (ul, pl) and note that F = F1 + F2, C = C1 + C2

with the definitions

Fl =
∫
S

σl · n dS, Cl =
∫
S

O′M ∧ σl · n dS, for l = 1, 2. (12)

The simple form adopted by the flow (u1, p1) easily yields on S the basic relation

σ1 · n = aσ[∇φ · n][n ∧ B]/2 − σ[(E ∧ B) ·O′M]n (13)

which thus permits one to deduce from the previous determination of φ on the
sphere’s surface the pair (F1,C1). Finally, the pair (F2,C2) is obtained by solving
(10)–(11) in bipolar coordinates. Such a tricky task is achieved by extending
the treatment employed in [6–8] for divergence-free Stokes flows, about a solid
translating or rotating sphere, that vanish on the wall.

3. Solution for Case 4. For conciseness, it is not possible to produce
here the results for each Case m. We thus illustrate the method for the simple
Case 4 and postpone the treatment of other Cases to the oral presentation.

4. Form of the potential φ in the liquid and value of (F2,C2). Since
E = Ee3 and B = Be3 one arrives in the liquid, i. e. for ξ ≥ α, at

φ = Ec(cosh ξ − λ)1/2
∑
n≥0

Bn sinh(γnξ)Pn(λ) (14)

with γn = n+1/2, λ = cos η and Pn the Legendre polynomial of order n. Moreover,
setting δ = σs/σ, the coefficients Bn obey the linear system

n[δ sinh(γn1)α+ cosh(γn1)α]Bn−1+
+ (1δ) sinhα sinh γnα+ (2n+ 1) coshα[cosh γnα+ δ sinh γnα]Bn−

− (n+ l)[cosh(γn + 1)α+ δ sinh(γn + 1)α]Bn+1 =

= 2(1 − δ)
√

2e−γnα[coshα− (2n+ 1) sinhα] for n ≥ 0. (15)

By elementary algebra one thus establishes that Fi = 0 and Ci = C
(4)
i e3 with

C
(4)
i = −8πa4σsEB sinh2 α

∑
n≥0

Bn sinh(γnα)Tn, (16)

T0 = v1, (2n+ 1)Tn = vn+1 − vn−1 for n ≥ 1, (17)

vn =
√

2(n+ 1)e−γnα[(2n+ 1) sinhα+ 2 coshα]/15 for n ≥ 0. (18)
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4.1. Determination of (F1,C1) and (F2,C2). Using (13) in conjunction
with (14) yields (F1 = 0 and C1 = C

(4)
1 e3 with the following value

C
(4)
1 = −4πa4σEB sinh2 α

∑
n≥0

Bncn(α)vn, (19)

2cn(α) = [sinhα sinh(γnα) + (2n+ 1) coshα cosh(γnα)]Bn−
− n[cosh(γn − 1)α]Bn−1 − (n+ 1) cosh(γn + 1)α]Bn+1 for n ≥ 0. (20)

Note that u1 vanishes on the plane wall Σ whereas ∇ · u1 = 0 in the whole liquid
domain. The problem (10)-(11) then becomes simple and symmetries suggest to
select its solution as p2 = 0 and u2 = σBF (ρ, x3)eψ/(2µ) with eψ = e3 ∧ (e1 +
e2)/(x2

1 + x2
2) for ρ �= 0. Proceeding as in [9], one gets F2 = 0) and C2 = C

(4)
2 e3

with
C

(4)
2 = −2

√
2πa4σEB sinh4 α

∑
n≥1

n(n+ 1)Gn, (21)

− n− 1
2n− 1

sinh(γn−1α)Gn−1 + coshα sinh(γnα)Gn− n+ 2
2n+ 3

sinh(γn+1α)Gn+1 =

=
sinh(γn−1α)

2n− 1
Bn−1 − sinh(γn+1α)

2n+ 3
Bn+1 for n ≥ 1. (22)

In summary, one computes C(4)
n = C

(4)
i +C

(4)
1 +C

(4)
2 by solving the systems (15),

(22) and using the results (16)–(18), (19)–(20) and (21).

5. Concluding remarks. The oral presentation will not only give the
net force F and net torque C applied on a motionless sphere in other Cases m
but also obtain the rigid-body motion (U,Ω) of a freely suspended sphere in each
Case. Gravity effects with a uniform gravity field ge3 normal to the wall will be
also added in Case 2 with a special attention to the possible equilibrium positions
of the sphere versus (E,B, g, δ, ds) with ds) the sphere density with respect to the
liquid metal.
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