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1. Introduction. In several induction melting process, like the cold cru-
cible orsemi-levitation, the free surface of liquid metal is submitted to AC magnetic
fields which may considerably deform the surface. It has been observed that the
free surface sometimes becomes strongly asymmetric and even irregular when too
strong magnetic field is applied [1, 2]. On the one hand, such kind of instability
lies outside the scope of the simple theoretical models considering a flat surface
along a uniform AC magnetic field [3, 4]. On the other hand, non-planar surfaces
in nonhomogenous magnetic fields do not admit, in general, an analytical solu-
tion. In this work, we propose a new, simple theoretical model to describe such
instabilities. The model consists of a flat liquid metal droplet in a transverse AC
magnetic field. The AC frequency is assumed to be so high that the magnetic field
is effectively expelled from the droplet by the skin effect. On the other hand, the
droplet is assumed to be thin so that it can be considered as a liquid sheet.

2. The model of a semi-infinite thin liquid sheet. Consider a thin
horizontal layer of liquid metal submitted to a transverse AC magnetic field with
induction �B. The layer is assumed to be semi-infinite and lay in the right-hand
side of the x−z-plane so that the unperturbed edge of the layer coincides with the
z-axis and the magnetic field is applied along the y-axis of the Cartesian system
of coordinates, as illustrated in Fig. 1. The AC frequency is assumed to be so
high that the skin effect renders the layer effectively impermeable to the magnetic
field. In addition, the layer is assumed to be thin so that it can be considered as
a thin sheet. The scalar magnetic potential Ψ, which is introduced to define the
magnetic field in the space around the sheet as B = ∇Ψ, satisfies ∇2Ψ = 0. The
impermeability condition at both sides of the sheet takes the form

x(z,t)=x(t)cos(kz)^
y

x

z

Fig. 1. Sketch to the formulation of the problem.
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(n ·B)|y=±0;x>0 =
∂Ψ
∂n

∣∣∣∣
y=±0; x>0

= 0, (1)

where n is the surface normal vector. In the following, we focus on the distribution
of the magnetic field in the vicinity of the edge which can conveniently be described
in the cylindrical coordinates with the z-axis coinciding with the edge, while the
polar angle ϕ is measured as usual counterclockwise from the x-axis (see Fig.2a).
The solution for the unperturbed potential in the vicinity of the edge satisfying
condition (1) can be found as Ψ0(r, ϕ) = f0(r) cos(ϕ/2), where f0(r) = C0

√
r

involving C0 an unknown constant, which can be determined by considering a
strip of finite width. Further, suppose that there is a perturbation of the edge

x1(z, t) = x̂(t) cos(kz)

with a small, generally time-dependent amplitude x̂(t) and the wave number k
along the z-axis. The edge perturbation is expected to cause perturbation of the
potential which can be presented as Ψ(r, ϕ, z) = Ψ0(r, ϕ) + εΨ1(r, ϕ, z) + . . . ,
where Ψ1 is a perturbation of the potential with a characteristic amplitude ε. To
relate the perturbation of the potential to that of the edge, we need an additional
condition at the edge, which follows from the induced current in the sheet. As
easy to see, the current in the sheet and the magnetic field along it are mutually
perpendicular because of j = µ0n × B, where µ0 is the permeability of vacuum.
Consequently, the magnetic field along the sheet has be to perpendicular to the
edge because the current has to flow along the latter. Thus, along the edge L, we
have (τ ·B)|L = ∂Ψ/∂τ |L = 0, where τ is the unit vector tangential to the edge
that implies Ψ|L = const, where we can set const = 0 because the potential is
defined up to an additive constant. By applying this condition at the perturbed
edge with x = x1(z, t) we obtain up the first order terms in the perturbation
amplitude Ψ|x=x1

≈ (Ψ0 + x1∂Ψ0/∂x + εΨ1)|r→0; ϕ=0 = 0 that results in

εΨ1|r→0; ϕ=0 = − ∂Ψ0

∂x
x1

∣∣∣∣
r→0; ϕ=0

= − C0

2
x1√

r

∣∣∣∣
r→0

. (2)

The perturbation of the potential satisfying the impermeability condition can
be sought similarly to the base field in the form Ψ̂1(r, ϕ) = f1(r) cos(ϕ/2) that

leads to
1
r

d

dr

(
r
df1

dr

)
+

1
4

f1

r2
− kf1 = 0. The solution of this equation satisfying

condition (2) is f1(r) = −C0

2
x1√

r
e−kr. Then the full solution of the potential

including the perturbation is

Ψ(r, ϕ, z) = C0

(√
r − 1

2
x1√

r
e−kr cos(kz)

)
cos(ϕ/2), (3)

which in the vicinity of the perturbed edge can be presented as

Ψ|x=x1
≈

(
Ψ0 +

∂Ψ0

∂x
x1 + εΨ1

)∣∣∣∣
r→0

= C̃0

√
r cos(ϕ/2),

where C̃0 = C0

(
1 +

1
2
x̂k cos(kz)

)
. Thus, the perturbation of the edge results

in replacement of the constant C0 by C̃0 in the solution for the unperturbed
solution. The magnetic flux and the current lines along the layer in the vicinity of
the perturbed edge are shown in Fig. 2b.
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Fig. 2. (a) Evaluation of the magnetic pressure on the edge of the layer. (b) Magnetic flux and
current lines along the layer in the vicinity of the perturbed edge.

In the perfect conductor approximation, the AC magnetic field generates an
effective magnetic pressure on the surface of the layer with a time-averaged value
pm = |B|2/4µ0, where is B is the amplitude of the AC magnetic field at the
sheet. As seen from solution (3), the magnetic pressure increases towards the
edge as ∼ 1/r and, thus, it becomes singular at the edge. This singularity can be
eliminated by considering a layer with a small but finite radius of curvature r0.
Then the magnetic pressure at the edge ∼ 1/r0 integrated over the “thickness” of
the sheet ∼ r0 will result in a finite integral force independent of r0. To evaluate
the integral force on the edge, we assume r0 = d0/2 to be constant, as shown in
Fig. 2a). Then the integration over the edge yields to up the first order terms

F = lim
r0→0

∫ r0

−r0

pmdy = − 1
4µ0

lim
r0→0

r0

∫ 3π/2

π/2

B2(r0, ϕ) cos(ϕ)dϕ = F0 + F1,

where F0 = C2
0/8µ0 and F1 = F0x̂k cos(kz) are the base force and its perturbation,

respectively. Further, we assume the sheet to be an inviscid liquid and consider a
small-amplitude potential flow in the sheet caused by the perturbation of the edge.
Thus, the linearised Euler equation applied to a potential velocity field v = ∇Φ

ρ
∂v
∂t

+ ∇p = ∇
(

ρ
∂Φ
∂t

+ p

)
= 0

leads to the pressure distribution in the sheet p = p0 − ρ∂Φ/∂t = p0 + p1,
where p0 is a constant base pressure, while p1 = −ρ∂Φ/∂t is a perturbation
of the pressure. The velocity potential Φ is governed by the incompressibility
constraint ∇ · v = 0, which results in ∇2Φ = 0. At the free edge x = 0,
we suppose the balance of normal stress averaged over the thickness of sheet:∫ d0/2

−d0/2 (p − γ/R) dy ≈ (p − γ/R)d0 = F that results in p|x=0 = γ/R + F/d0,
where γ is the surface tension and 1/R denotes the curvature of the edge. For an
unperturbed edge we have p0 = γ/R0 + F0/d0. Then, for the perturbation the
balance condition takes the form

−ρ
∂Φ
∂t

∣∣∣∣
x=0

=
γ

R1
+

F1

d0
, (4)
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where 1/R1 ≈ ∇2x1 is the perturbation of the curvature of the edge. In addition,
we have a kinematic constraint at the edge

vx|x=0 =
∂Φ
∂x

∣∣∣∣
x=0

=
∂x1

∂t
. (5)

Henceforth, we search for the amplitude of the edge perturbation in the form
x̂(t) = x0e

λt, where λ is, in general, a complex growth rate, whose real part has
to be negative for the perturbation to be stable. In addition, all quantities are
supposed to be constant over the thickness of the sheet because of smallness of the
latter. Thus, searching the hydrodynamic potential as Φ(x, z, t) = Φ̂(x) cos(kz)eλt,

we obtain the equation
d2Φ̂
dz2

− k2Φ̂ = 0, whose solution decaying away from the

edge is Φ̂(x) = Φ0e−kx. The amplitude of the hydrodynamic potential is related to

that of the edge perturbation by the kinematic constraint (5) Φ0 = −λ

k
x0. Finally,

the normal stress balance (4) yields λ = k

√
1
ρ

(
F0

d0
− kγ

)
, which implies that

long-wave perturbations with wavenumbers k < kc =
F0

γd0
are unstable. Thus, the

stronger the the linear electromagnetic force density on the edge F0, the shorter
the critical wavelength kc. The waves, which are shorter than the critical, are
stabilised by the surface tension. Although the long waves are always unstable,
their growth rate reduces as ∼ k for k → 0. Thus, there are perturbations with

kmax =
2
3
kc, for which the growth rate has the maximum λmax = kmax

√
1
3ρ

F0

d0
.

3. Conclusions We have obtained an analytical solution for the model of
a semi-infinite sheet with a straight edge showing that the long-wave perturbations
are unstable when the wavenumber exceeds some critical value kc depending only
on the surface tension and the density of electromagnetic force at the edge. The
higher the density of the electromagnetic force, the shorter the critical wavelength.
The perturbations with a wavelength shorter than the critical one are stabilised by
the surface tension, whereas the growth rate of long-wave perturbations reduces as
∼ k for the wavenumbers k → 0. Thus, there are the fastest growing perturbations

with the wavenumber kmax =
2
3
kc.
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