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While basing oneself on the phenomenon of crystal growth in a cylindrical system, one
proposes an alternative of this process, which is based on the modification of the crucible.
This one is replaced by a sphere containing the molten phase of possibly variable material
height, the cylinder carrying the germ of the crystal remains unchanged.

This work is thus justified by the study of the influence of the geometry for purposes
to optimize the whole processes of transfer in action making it possible to homogenize
the fields of temperature and to minimize the losses of masses having to take part in
the development of the bulk-flow (traditional Czochralski process). The simulation of
the phenomenon thus defined is considered within the framework of the assumption of
Boussinesq to solve the equations of transfer of mass, heat, and momentum and written
in a spherical frame of reference.

Introduction. The variation in temperature in the system of growth is
at the origin of current of convection in the melt. It was shown that the flows
play a significant role in the process of growth while acting on the form and the
stability of the interface, like on the radial distribution of the doping agents in the
crystal [1]. The increase in the variation in temperature induces the development
of instabilities meadows of the interface. This bad effect to a good crystallization
is eliminated due to the rotational movement, imposed on the crystal and/or
the crucible, which are opposed to the natural convection. We passe thus from
the mode of the free convection dominating to the mode of the forced convection
controlled. Other types of forces can be used to attenuate the disturbances induced
by the temperature like the magnetic field. Flows generated by forces, which had
the gradients of surface stress, are also possible according to dimensions of the
crucible. A compromise must be to adopt the size of the crystal and dimensions
of the device [2].

(a) (b)

Fig. 1. (a) Device cylinder/cylinder. (b) Device cylinder/sphere.
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1. Device. In a traditional device, the molten material is placed in a
cylindrical furnace crucible, fixed at the temperature Tc, the mixer carrying the
germ is of the same cylinder centers as the crucible (Fig. 1a). The two cylinders
are caused by counter-rotating engines.

Anselmo et al. [3] showed by a numerical method that a crucible with a
curved bottom has advantages for crystallization. This observationIt was taken
into account that led us to replace the system cylinder/cylinder by a cylindro-
spherical system.

It is thus about an alternative model represented in Fig. 1b, which one calls a
cylindro-spherical system, made up of a cylinder carrying the germ of growth, of
radius Rc. This one turns at an angular velocity Ωc plunged in a spherical crucible
which contains a melt of silicon of radius Rs, temperature Ts, and is laid out on a
rotary table with an angular velocity Ωs.

2. Formulation of the problem. Taking account of phenomenologic
complexity, one is led to make assumptions of simplification, namely:

• The thermophysical properties of the fluid are constant.
• The molten melt is a Newtonian and incompressible fluid and satisfay the

assumption of Boussinesq: it supposes that the effects of variations in density
are significant for the forces of volume, the other variations are considered
negligible.

• The flow of the liquid within the crucible is laminar.
• The shape of the liquid-solid interface is supposed to be spherical.
• Axial symmetry.
• At the melting point the temperature is constant.
• Calculations are carried out in a stationary mode.

The equations governing the dynamics of the flow result from the principles of
conservation of mass, momentum, and the conservation equation of energy in the
melt. One notes V the speed of the movement, and P is the associated pressure
and T is the temperature, g is the field of gravity, Q is a source term coming from
the radiation in the system.
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the boundary conditions are as follows:

r = 1 V = Rec sin θeϕ T = 1
r = A V = Res sin θeϕ T = 0

θ =
π

2
Vθ = 0

∂Vϕ

∂θ
= 0

where A is the radius ratio; Rec =
R2

cΩc

υ
and Res =

RcRsΩs

υ
are the Reynolds

numbers associated with the crucible and the crystal.
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We eliminate the pressure from the first and the second equations by deriving,
following to θ and to r.

The Grashof number Gr = gβR3
c(Ts − Tf)/υ2 characterizes the effect of the

natural convection.
The Prandtl number Pr = υ/α characterizes the importance of thermal dif-

fusivity compared to molecular diffusivity.
We propose the expressions of the velocity and temperature fields, which verify

the boundary conditions:
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According to Galerkin method [5], we replace these expressions in the equations

of movement, and we multiplies by Wm =
∑
m

(
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)
rm−1 and integrate

thereafter between A and 1.
By applying the boundary conditions to the form of Vϕ, we can have the form

of ψ (θ), a and b

ψ(θ) = ψ0 sin θ a =
A2Res − Rec

A3 − 1
b =
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A3 − 1

In the next step one is led to carry out an approximation of the order n = m = 1
to have an estimate of the solution:
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The equation of the stream lines in the axisymmetric case is given by the relation

{
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r −A

}− I1
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= CΦ sin θ

We fix the radius ratio A = 0.25; the complete definition of the velocity field
requires the following data parameters: viscosity, radii of crystal and crucible and
their respective angular velocities. Those are given close to those of Anselmo [4].

The evaluation of the integral
∫
θ

sin θ′1+Ndθ′ is carried out using the Lanczos

method [5].
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Fig. 2.

Therefore, the expression of the stream lines is given as the following tran-
scendental relation:
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We obtain then the curves of f , Φ and ψ, Fig. 2

3. Conclusion. This study made it possible to verify the assumption
concerning the importance of the spherical geometry in term of effectiveness of
convective thermo exchange compared to the cylindrical configuration. Thus the
process of growth is sensitive to the effect of spherical symmetry which induces
the formation of a bulk flow of optimal size.

Indeed the distributions of the velocity and temperature fields are qualita-
tively comparable with the results found by Anselmo in the cylindrical geometry.
However, it differs from it quantitatively in form and size from the configuration
obtained due to the virtual non-existence of or not participative area of fluid died
in dynamics in the geometry considered.

As a prospect with this work, one plans to examine the effect of the free
surface or thermocapillarity effect on the flow when the height of the melt decreases
compared with the radius of the hemispherical crucible.
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