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Introduction. The flexible magnetic filaments created in different labs [1, 2]
recently have attacted a great interest. The theoretical model based on the exten-
sion of the Kirchhoff model of the elastic rod by including the magnetic energy term
was developed in [3]. On its basis the dynamics of the filament in the rotating field
[4], bending by the applied transversal force [5] were considered. By introduction
of the anisotropy of the friction coefficient a possibility to create micromachines
driven by an AC magnetic field was predicted by numerical simulations [6]. In
[6] to obtain the steady selfpropulsion of the filament with a hairpin shape, its
magnetic heterogeneity was considered. Here the issues of the anisotropy of the
filament, which can also have magnetic origin due to magnetodipolar interactions,
and heterogeneity, are considered in more details. Annother motivation of the
present work comes from experimental observations of steady “U”-like filament
shapes in the rotating field [2] which, as it was illustrated in [4], are unstable. One
possibility to explain the formation of such shapes consists in the assumption of
magnetic heterogeneity of the filaments due to irregularities in the process of their
production. Here we illustrate by numerical simulations that in the case of the
magnetic heterogeneity “U”-like shape synchronously rotating with the magnetic
field is possible.

1. Model. According to a Kirchoff model of elastic rod extended by
including the magnetic term, its energy has the form [3]:

1 1 2m2a?x?HE 9
EfgC/ﬁdlfﬁ/(ht) dlf/Adl (1)

Here R is the radius of curvature of the center line but C' through the radius of a
cylinder and its Young modulus Y is expressed as follows C' = %a‘lY, n=1+4+4my,
x is the magnetic susceptibility of the rod, Hgh is the external magnetic field
strength in the direction of the unit vector h. The tangent to the center line t
is given by its components t = (cos,sind}). Local inextensibility of the rod is
accounted for by introducing local tension of the rod as a Lagrange multiplier A.

Considering the variation of (1) with respect to ¥ = r + £ from the first
variation of the energy functional

0E = [M(S(P] + [tht] + [ann] - /tht dl — /anndh (2)

momentum stresses M, normal and tangential stresses F,, F}; as well as body force
K are found in [3].

Here [ ] denotes the values at the ends of the rod, &, and & are the components
of Lagrange displacement in the directions of the normal and tangent to the center

agn gt

line correspondingly, but d¢p = R is the angle of a tangent angle rotation
at the Lagrange displacements &.
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c
Introducing the characteristic elastic time scale 771 = length scale L,

= T%’
where 2L is the length of the rod, the set of equations for tangent angle and tension
has the following dimensionless form

1
’19,5 = — (19”” —+ 5 (19?)[) — (191/\)[ — A[’l?[ + Cm (Sil’l (219))l — Cmﬁ‘lQ sin (2’[9) . (3)

IFA — Ay = =9 (Y + 97) + 2Cm V7 cos (29) + Cm (I, sin (29)), . (4)
212a?x? HZL?
C(p+1)
of the magnetic and elastic forces. Coupled set of equations (3) and (4) describing
the dynamics of the rod under the action of the magnetic and elastic forces in the

viscous fluid is solved numerically. The boundary conditions corresponding to the
free and unclamped ends of the filament are the following:

Here Cm = is the magnetoelastic number characterizing the ratio

—9y + Cmsin (2¢) =0, (5)
0, =0 (6)
and
A=0. (7)
2. Anisotropic model. In the case when the anisotropy of the friction

coefficient is taken into account the components of the velocity can be written as
follows

ﬁC’UTL = Kn; (8)
Cvt = Kt; (9)

where ¢ is the friction coefficient in the tangential direction and g is the ratio
between friction coefficients in normal and tangential directions. In this case model
equations (3)—(4) read

2
+Cm (sin (2¢9)),, — fCm 97 sin (209) ,

B (0 +wr) =— (19”” + = (19?)1) — (A), — BY A+ (10)
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Fig. 1. Configuration of the rod in the rotating magnetic field in the frame of the field. Cm = 25,
wT = 25. Direction of magnetic field rotation is anticlockwise. Solid line — 8 = 1, bold line —

B=2.
342



Dynamics of anisotropic flexible magnetic filaments
1
VPN — BAy = —0, <19m + 5&?) + 2Cm 7 cos (29) + B Cm (Y sin (209)), . (11)

The anisotropy coefficient [ is between 1.5-2 [7]. In the case when S is equal to
one, we have isotropic model (3)—(4).

As seen from Fig. 1, the anisotropy of the friction coefficient increases the
phase lag of the magnetic rod from the magnetic field (bold line) in comparison
with the isotropic case (solid line). Thus the anisotropy of the friction coefficient
of the filament has influence on its steady shapes in the rotating magnetic field.

Due to the anisotropy of the magnetodipolar interactions, the curvature elas-
ticity of the magnetic filaments can be anisotropic. In this case the energy expres-
sion is

1 1 1 sin ¥ 2m2a®x2Hg 9
EfiC/ﬁdl—ifyC/ 7z - S /(ht) dlf/Adl. (12)

The equations for the tangent angle and tension are derived as follows

1
PN = BAy = =01 (9 (1 — ysin®9)), — 59 (1 — ysin® 9)+

+ BCm (¥ sin(29)), + Cmd; (sin(20)), + % 3 (91(1 — ysin® i), (13)

B¢ +wr) = — (9(1 — ysin® 19))”[ - % (97 (1 — 7sin® ﬂ))l — (A9); — BN+

+ Cm (sin(29)),, — ACm 97 sin(209) + %(191(1 — ~ysin? i)y, -
(14)
If the coefficient v = 0, the set of equations (13)—(14) transforms to the considered
above (10)—(11). The same boundary conditions are valid, the case with (8 = 1)
is further considered.

In Fig. 2 the shape of the filament with the anisotropy of the curvature elas-
ticity in the rotating field is compared with that of isotropic case. It can be seen
that the magnetic anisotropy of the filament diminishes the phase lag from the
magnetic field. This seems to be natural since the effective curvature elasticity
decreases with the increase of the phase lag.

02

Fig. 2. Configuration of the rod in the rotating magnetic field in the frame of the field. Cm = 25,
wt = 25, 8 = 1. Direction of magnetic field rotation is anticlockwise. Solid line — v = 0, bold
line — v =1.
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Fig. 8. Configurations of a flexible magnetic chain from the point of view of the laboratory set
of coordinates. Straight line shows the magnetic field direction. wr = 45. From top right to
left down ¢t = 0.000889, 0.01067, 0.03511, 0.04684, 0.05760, 0.06933, 0.08596, 0.10453, 0.12213,
0.13973, 0.15538, 0.17493, 0.19156, 0.20916, 0.22676.

3. Heterogeneus filament.  To consider the influence of the magnetic
heterogeneity of the filament on its dynamics in the rotating field, a diminished
value of the magnetoelastic number around the center of the filament has been
taken. As it was shown earlier [4], the “U”-shape is not stable in the case of
rotating magnetic field. It sooner or later relaxes to the shape close to the shapes
shown in Fig. 1. In Fig. 3 the steady ”U” like shape synchronously rotating with
the field is shown. It is found for the following set of parameters wr = 45, Cm = 25;
[ €[-1;-2/25]U[2/15;1] and Cm = 25*0.7; [ € [—-2/15;2/15]. This result gives
the possibility to explain the observation of ”U” - like shapes of the filaments
in experiment [2] by their magnetic heterogenity presumably arising during the
process of the production of the filaments.

4. Conclusions. Different models of magnetic filaments studied here
show that the anisotropy induced by long-range hydrodynamic and magnetic in-
teractions has influence on the steady shapes of filaments in the rotating field.
Observation in experiments of the peculiar "U” - like shapes can be associated
with magnetic heterogenity of the filaments arising at their production.
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