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We report an observation of a stable soliton-like structure on the surface of a ferrofluid,
generated by a local perturbation in the hysteretic regime of the Rosensweig instability.
Unlike other pattern-forming systems with localized 2D structures, magnetic fluids are
characterized by energy conservation; hence, their mechanism of soliton stabilization is
different from the previously discussed gain/loss balance mechanism. The radioscopic
measurements of the soliton’s surface profile suggest that locking on the underlying pe-
riodic structure is instrumental in its stabilization.

Introduction. To date, stable solitary waves have been experimentally ob-
served in a variety of one-dimensional and quasi-one-dimensional physical systems.
In 2D, dispersive nonlinear systems are prone to collapse instabilities and hence
the 2D solitons turned out to be more elusive. (Here we use the term “soliton”
in a broad physical sense as a synonym of localized structure.) So far, the list
of experimentally detectable 2D localized objects was confined mostly to vortices
in superfluids, superconductors, and other media, on one hand, and dissipative
solitons in nonequilibrium systems, on the other. While the stability of the former
is due to their nontrivial topology, the latter come into being via the balance of
strong dissipation and energy gain. Examples include current filaments in gas dis-
charge systems [1]; oscillons in fluids and granular materials [2]; breathing spots
in chemical reactions [3] and feedback and cavity solitons in optics [4]. Despite
some encouraging theoretical insights, the question of whether 2D non topological
solitons can arise in conservative systems has remained open.

Here we report an experimental observation of a strongly localized, stable
stationary soliton on the surface of magnetic fluid (MF) in a stationary magnetic
field. The MF is a dispersion of magnetic nanoparticles, and thus has a high
relative permeability µr[5]. This is a lossless system; a horizontal layer of the MF
in a vertically applied magnetic induction B is characterized by the energy density
[6, 7]:

F(h) =
ρg

2
h2 −

∫ h

0

dzB
µr − 1

2
HMF(x, y, z) + σ

√
1 + (∂xh)2 + (∂yh)2. (1)

Here ρ and σ are the density and surface tension of the MF, h(x, y) is the local
height of the liquid layer, and HMF(x, y, z) is the magnetic field in the presence
of the MF. The three terms in Eq. (1) represent the hydrostatic, magnetic and
surface energy, respectively. As the surface profile deviates from the flat reference
state, the first and last term grow, whereas the magnetic energy decreases. For
sufficiently large B, this gives rise to the Rosensweig instability [8, 5].

1. Experimental setup. Our experimental setup is sketched in Fig. 1a.
A Teflon� vessel with the radius R = 60mm and depth of 3 mm [9] is filled
with the MF up to the brim and placed on the common axis midway between
two Helmholtz coils. An x-ray tube is mounted above the center. The radiation
transmitted through the fluid layer and the bottom of the vessel is recorded by an
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Fig. 1. Radioscopy: (a) sketch of the experimental setup; (b) reconstruction of the surface
relief for B = 10.407 mT. Each color marks a layer of 1mm.

x-ray sensitive photodiode array detector (16 bit) connected to a computer. The
full surface relief is then reconstructed from the calibrated radioscopic images, as
shown in Fig. 1b. For details see [10]. The experiments were performed with the
magnetic fluid EMG901 from Ferrotec. Its material parameters are µr = 3.2,
ρ = 1.406 g cm−3, and σ = 25 ± 0.7mN/m.

2. Results. We measured the top-to-bottom height A of the stationary
fluid pattern arising in the adiabatic increase and decrease of B. To avoid the
edge-induced imperfections in the character of the bifurcation, we only consider
spikes located within 11 mm from the center of the dish. Fig. 2 displays results
obtained for 400 values of B. As B is increased, a sudden transition to the upper
branch occurs at Bc = 9.025mT. For B > Bc, the entire surface is covered with a
lattice of liquid spikes, which is hexagonal away from the boundary. Decreasing B,
the order parameter A remains on the upper branch all the way to B∗ = 8.076mT,
where it drops to the flat reference level. The subcritical bifurcation to hexagons
is described by the amplitude equation εA+γ(1+ ε)A2− gA3 = 0 of Ref. [7]. The
solid (dashed) lines display the least square fit to the roots

A± = [γ(1 + ε) ±
√

γ2(1 + ε)2 + 4 εg]/(2g), (2)

with γ = 0.281 and g = 0.062.
To study the stability of the flat surface to local perturbations (in the hys-

teretic regime), a small air coil with the inner diameter of 8 mm was placed under

Fig. 2. (a)The amplitude of the pattern for r < 11 mm versus the magnetic induction. The
crosses (dots) mark the values for increasing (decreasing) induction, respectively. The solid
(dashed) lines display the least square fit to Eq. (2). The full circles (squares) give the amplitude
of the localized spike initiated at B = 8.91 mT for increasing (decreasing) induction, respectively.
(b) The filled squares mark the profile of one period of the hexagonal pattern, measured at
B = 9.07mT in the center of the vessel; r < 8.8mm. Azimuthally averaged height profiles of
two different solitons, measured at the same induction, are depicted by open symbols (one) and
a dashed line (the other).
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Hexagons and soliton-like spikes

the center of the vessel (see Fig. 1a. This allows to increase, locally, the mag-
netic induction. A local pulse of B+ = 0.68mT, added to the uniform field of
B = 8.91mT, produces a single stationary spike of fluid, surrounded by a circular
dip, which does not disperse after B+ has been turned off. The inset of Fig. 1b
presents a photo of this radially-symmetric state, which will be referred to as the
soliton. The soliton is a stable nondecaying structure; it remained intact for days.

We examined the range of stability of a soliton generated by a pulse with B+ =
0.68mT added to the uniform induction B = 8.91mT. Reducing B adiabatically
we measured the corresponding amplitude of the soliton (marked with full squares
in Fig. 2a. Similarly to the spikes in the hexagonal pattern, the height of the
soliton decreases as B is reduced. The soliton decays for B < 8.09mT, which is
close to B∗ = 8.076mT, the lower stability boundary of the hexagonal pattern. As
B is increased, the amplitude of the soliton grows, as indicated in Fig. 2a with full
circles. At B = 9.055mT, a sudden transition from the soliton to a fully developed
Rosensweig pattern occurs.

In order to illustrate the robustness of the soliton’s shape, we show in Fig. 2b
the azimuthally averaged profiles of two different solitons, produced in two separate
experiments at B = 9.07mT. The profiles are practically indistinguishable. Also
plotted are two half-periods of the corresponding hexagonal lattice. In agreement
with Fig. 2, the soliton is about 1mm taller than the spikes of the lattice. This
may be attributed to the fact that the spikes emerge simultaneously, and thus have
to share the liquid available. However, the width of the soliton is very close to
the period of the lattice. Therefore, there is a preferred wavelength in the system,
to which the soliton locks and stabilizes. A similar stabilization mechanism was
discussed before in the context of wave front locking [12]. See also [13]. We
have modelled the soliton’s stabilization by a conservative analogue of the Swift–
Hohenberg equation [11]. The model exhibits a nonmonotonic dispersion relation
like in the case of ferrofluids [8].

Applying, repeatedly, pulses of B+ and allowing the newly born solitons to
drift away from the site of the probe coil, we were able to generate two, three,
and more solitons. Fig. 3a presents an example of a 9-soliton configuration, with
only one remaining at the center. In this way, it is possible to increase the surface
energy of the liquid layer in steps. This is illustrated in Fig. 3b which also shows
the surface energy of the Rosensweig pattern as a hysteretic function of B.

Fig. 3. Multiple Solitons: (a) nine solitons at B = 8.91mT. (b) The surface energy of the
liquid layer according to Eq. (1) for increasing (open squares) and decreasing (circles) magnetic
induction. The full circles mark the increase of Es through the successive generation of solitons
at B = 8.91mT (see inset).
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3. Conclusion. We found stable 2D solitons on the surface of a ferrofluid
in the hysteretic regime of the Rosensweig instability. These objects are easy to
generate and control and they are easily set in motion; this opens ways for studying
their binding and scattering. Due to the conservative nature of the ferrosolitons,
and unlike the localized structures observed previously in dissipative systems, the
balance of dissipation and energy gain plays no role in their stabilization. Instead,
we suggest a stabilization mechanism which appeals to the locking of the soliton to
the wavelength imposed by the nonmonotonic dispersion relation. This mechanism
can also be at work in other conservative systems with preferred wavelengths, e.g.,
in electrostatics and elasticity [14].
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