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Instability and transition to turbulence in MHD
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DRIVENFLOW IN ACOUNTER-ROTATINGCYLINDER
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Institute of Physics, University of Latvia, LV–2169 Salaspils, Latvia

Introduction. The RMF driven flow in a stationary container has an al-
most rigidly rotating inviscid core separated from horizontal end walls by Bödewadt
type boundary layers [1] with inward radial velocity. As first pointed out by
J. Priede in his thesis work, a fast enough rotation of the container in the direc-
tion opposite to the RMF changes the direction of the meridional flow. This is
due to the fact that the RMF can then only slightly brake the imposed almost
rigid body rotation. Thus, the centrifugal force increases in the direction from the
slower rotating core towards the faster rotating end-walls. Consequently, a radial
outflow is generated in the horizontal layers. There is one more consequence from
the fact of the slower rotating core: the absolute angular velocity increases out-
wards in the side layer and, thus, the Rayleigh stability criterion [2] is satisfied.
Consequently, one may expect that the side layer stays stable so far as the liquid
rotates in the direction opposite to the RMF.

Walker & Martin Witkowski [3] considered numerically the effect of mechan-
ical rotation of the container on the linear onset in the RMF driven flow and
concluded that counter-rotation definitely destabilizes the flow. This conclusion,
however, was based upon the results in a rather narrow range of imposed counter-
rotation rates excluding the regime with an inverted meridional flow direction.
Therefore, our study is mainly focused on this regime.

1. Experimental procedure. Let a regular cylinder of a diameter equal
to its height filled with mercury rotates with a constant angular frequency −Ω in
a uniform rotating magnetic field with an amplitude B0 and an angular frequency
ω0. The task consists in finding conditions under which the stationary flow inside
the cylinder will be stable.

Suppose that the RMF frequency is low enough so that the skin depth
(µ0σω0)−1/2 � R0, where R0, µ0 and σ denote the radius of the cylinder, the
magnetic permeability and the conductivity of liquid, respectively. Additionally
suppose that the Hartmann number of the RMF is low: (σ/ρν)1/2B0R0 � 1, with
density and kinematic viscosity of liquid denoted by ρ and ν, respectively. Under
these conditions the action of the RMF can be described by a purely azimuthal
body force

fφ(r, z) = 0.5σω0B
2
0rf(r/R0, z/R0), (1)

where (r, φ, z) denote cylindrical coordinates, but f is a dimensionless shape func-
tion with an analytical expression [4].

1.1. Measuring principle. The RMF driven flow in a resting cylinder is
very sensitive to geometric imperfections [5]. Hence, any geometrical imperfections
(also probes) should be avoided. A probe-less observation method [5] can hardly
be applied in case of a rotating container. To detect transition to instationarity, we
superimposed a steady axial magnetic field and registered the electrical potential
at the cylinders side wall. The strength of the axial field was taken as low as
possible to minimize its influence on the transition. The electric potential can be
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Fig. 1. Scheme of the experimental stand.

evaluated from the Ohm’s law:

j = σ(−∇ψ + v × B). (2)

If the velocity field has a fluctuating component v′, then it is accompanied by a
fluctuating electric potential ψ′. Thus, the transition to instationarity should be
observable by measuring the electric potential at the side wall of the container.

1.2. Stand A scheme of the experimental stand is shown in Fig. 1. A cylin-
drical container of inner diameter and height of 40mm was made of plexiglass and
filled with mercury. Four copper electrodes of 0.25mm diameter were glued into
the side wall 5 mm above the bottom surface with equal angular displacement by
π/2. The reference electrode was placed on the axis of the container in the bottom
wall. The final processing of the internal surface of the container was performed
after installation of electrodes. By this approach we obtained a uniformly smooth
inner surface. The container was exposed to the axial magnetic field of ring-type
Nd-Fe-B permanent magnets with maximum induction 40 mT and non-uniformity
10%.

1.3. Measurement technique. We placed the registering equipment on a
rotating table. The measurements were made by a 24-bit 4-channel Data Trans-

lation DT9820 measurement board with the sampling rate of 15Hz and max-
imum resolution of 4.6 nV. The acquired data were stored on the hard disk of
a PC, which also rotated together with the container. To establish communica-
tion between the measuring computer and a host computer, two wireless network
adapters were used.

2. Numerical implementation. Let us introduce scales R0 and R2
0/ν

for the distance and the time, respectively. The transient flow velocity v(r, φ, z, t)
can be then described by incompressible Navier–Stokes equations in the dimen-
sionless form:

∂v
∂t

+ (v∇)v = ∇2v −∇p+ Taf(r, z)reφ (3)

with a continuity constraint ∇ · v = 0 and boundary conditions v|S = −ReΩreφ,
where S stands for the surface of the cylinder (r = 1 or |z| = 1). Two control
parameters of this problem are the magnetic Taylor number Ta = σω0B2

0R4
0/2ρν2

and the Reynolds number of cylinder’s rotation ReΩ = ΩR2
0/ν.
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Fig. 2. Standard deviation of the registered potential fluctuations δψ vs. RMF induction for
different rotation rates of the container: crosses, triangles and asterisks correspond to cases with
Ω = 0, 15 and 45 rpm, respectively.

Instead of solving an eigenvalue problem we integrated in time (3) for separate
azimuthal modes with a random initial perturbation superimposed on the basic
velocity field. Few leading eigenvalues and eigenmodes were evaluated by the
‘snapshot’ method [6]. The numerical tools used in this study were the same as in
Ref. [7].

3. Experimental results. To detect the onset, the fluctuating electric
potential was explored. Standard deviation of the filtered fluctuating electric po-
tential is shown versus Ta in Fig. 2. The standard deviation of the signal showed
a pronounced jump at B0 = 0.75 mT (Ta = 0.23 × 106) for Ω = 0, which was
identified as the stability threshold (Fig. 2). The critical Taylor number values
were Tac = 4.8 × 105 and Tac = 2.15 × 106 for the imposed rotation rates Ω = 15
and Ω = 45 rpm, respectively.

4. Numerical results. In the limit of the vanishing RMF, the flow is
rotating almost rigidly with the angular velocity −Ω. The core is separated from
the horizontal walls by the Ekman layers of O(Re−1/2

Ω ) thickness [8]. Assuming
slow variation of the differential core angular velocity with respect to the radial
coordinate, the azimuthal velocity can be expressed as

vφ(r, z)
r

= −ReΩ + g0(r)
(
1 − e−ζ cos(ζ)

)
(4)

where ζ = Re1/2
Ω (z ∓ 1) is a stretched coordinate in the top or bottom layer,

respectively [8]. The expression of the differential core angular velocity g0(r) =
TaRe−1/2

Ω f̄(r), where f̄(r) = 0.5
∫ 1

−1 f(r, z)dz, may be easily obtained from the
angular momentum balance of magnetic production in the core and viscous outflux
through the boundary layer. A good agreement to this asymptotic solution was
observed for g0 � ReΩ. The differential rotation increased much faster than the
linearized solution (4) when g0 ≈ ReΩ. The reversal of the azimuthal flow with
respect to the laboratory reference frame first took place near the axis and was
accompanied by an almost immediate onset of instability (Fig. 3).

5. Conclusions. A strong counter-rotation of the container stabilizes the
flow driven by the rotating magnetic field and changes the direction of the basic
meridional circulation. The similarity solution in the horizontal boundary layers
breaks down quickly when the differential rotation becomes comparable to the
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Fig. 3. The calculated critical magnetic forcing vs. the mechanical rotation rate Tac(ReΩ) is
shown by the solid line. Diamonds depict forcing, at which the flow reversal starts. Numerical
results with the superimposed uniform magnetic field are shown by triangles. Crosses correspond

to the experimentally observed onset, cf. Fig. 2. The dashed line displays Re
3/2
Ω slope.

rotation of the container. This is accompanied by concentration of the differential
swirl near the axis. The Rayleigh stability criterion is violated in this region
as soon as the angular velocity changes its direction with respect to the inertial
laboratory frame of reference. An almost immediate rapid onset of turbulence is
observed at the critical magnetic Taylor number, which scales as Re3/2

Ω . Further
increase of the magnetic forcing considerably destabilizes the flow in comparison
to a fixed container.

This work was supported by the European Commission under grant No.
G1MA-CT-2002-04046.
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